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Abstract

Molecular dynamics simulations are used to investigate polymer networks made by either end-linking or randomly crosslinking a melt of

linear precursor chains. The resulting network structures are very different, since end-linking leads to nearly ideal monodisperse networks,

while random crosslinking leads to polydisperse networks, characterized by an exponential strand length distribution. Networks with average

strand length 20 and 100 were generated. These networks were used to study the effects of disorder in the network connectivity on

observables averaged either over the entire network or selected sub-structures. Heterogeneities in the randomly crosslinked networks cause

significant differences in the localization of monomers, however, neither the localization of crosslinks nor the microscopic strain response are

significantly affected. Compared to end-linked networks, randomly crosslinked networks have a slightly increased tube diameter, and as a

result a slightly decreased shear modulus, but otherwise identical stress–strain behavior. For the investigated systems, we conclude that the

microscopic strain response, tube diameter, and stress–strain relation are all insensitive to the heterogeneities due to the linking process by

which the network were made.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Polymer networks such as vulcanized natural rubber

have been studied for more than two centuries [1,2] and

remain a very active field of research. Computer simulations

play an increasingly important role, since they allow for

control over and access to the microscopic network structure

and its reponse to deformations [3,4]. Selected examples of

very recent progress using computer simulations with

emphasis of formation and structure of polymer networks

are atomistic molecular dynamics simulations of PDMS

network formation [5], reversibly self-assembled tri-func-

tional networks of flexible or semiflexible chains [6], studies

of networks formation by non-stoichiometric crosslinking

[7,8], effects of non-spherical filler particles [9,10], effects

of mixtures of different crosslink functionalties [11], and a

topological characterization of network structure of end-

linked and randomly crosslinked networks for different

strand lengths [12]. Computer simulations also allow the
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effects of microstructures in the melt state prior to

crosslinking to be studied. For example the effects of

chain stiffness and volume fraction of precursor chains on

network formation and structure [13], networks formed by

crosslinking an AB copolymer melt microphase separated

into a lamellar phase [14], and networks formed by end-

linking a melt consisting of short and long strands [15].

The theoretical description of polymer networks remains

a challenge [1,16–20]. Understanding the molecular origin

of stress production in polymer networks is not only of

fundamental physical interest but also important for the

design of systems optimized for practical applications [21].

Crosslinking a melt of precursor chains leads to a polymer

network with a complex, quenched, random connectivity

and topology [22], which macroscopically behaves as a

(viscoelastic) solid. Computer simulations allow the full,

microscopic characterization of a polymer network, for

example in the form of the Kirchoff matrix characterizing

the network connectivity [15,23], and sequences of

topological invariants such as the Gauss linking number

characterizing the topological state [12,24–26]. The ques-

tion is, whether this vast amount of (experimentally

inaccessible) detailed microscopic information is really

needed. From a physical view point, one would expect

that the properties of polymer networks should be
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self-averaging, i.e. that they depend on the averaged

characteristics of the many possible realizations of

quenched connectivity and topology. While the calculation

of suitable averages over the quenched disorder is far from

trivial, theories of rubber elasticity [1,16–20] derive the

macroscopic elastic response from a description of the

average localization and deformation of parts of the network

as a function of a small number of physically motivated

parameters such as the density of chemical cross-links and

entanglements.

In the present paper we use MD simulations to

investigate how the central quantities of rubber elasticity

theory are affected by disorder in the microscopic

connectivity of polymer networks. For this purpose we

compare randomly crosslinked and randomly end-linked

model polymer networks with nearly identical average

strand lengths. Both types of systems have been used

experimentally to test theories of rubber elasticity [27–35]

and their respective advantages have been a matter of

debate. As in Ref. [36] we present our results within the

framework of the double tube model [37], because it

provides quantitative relations between microcopic and

macroscopic observables.

The structure of this paper is as follows. In the next

section we present a brief introduction to tube models

models for polymer networks with emphasis on the double

tube model. In Section 3, the polymer model, simulation

methodology, and crosslinking procedure are described. In

Section 4 characterization of the resulting networks is

presented. The analysis of the simulation data in terms of the

tube model are presented in Section 5 and our conclusions

are presented in Section 6.
2. Theory

A polymer melt or network is a challenging many-body

statistical mechanics problem. Chains have random walk

configurations, and since they can not pass through each

other, a single chain is entangled with many other chains.

Entanglement constraints transiently restrict the confor-

mation space available for thermal fluctuations, and cause

the chain to become localized. When a melt is crosslinked

chemical bonds are added between monomers, causing the

chain to be localized even further. The resulting network is

characterized by a quenched connectivity. During the

process of crosslinking the topological state of the network

is also quenched. The tube concept proposed by Edwards

[38] provides a tractable simplification of the statistical

mechanics of polymer melts and networks. The idea is to

model the complex many body-effects by a single effective

harmonic confining potential, that represents the collective

localization effects experienced by a single chain due to its

neighborhood [22].

Tube models [19,39–43] derives their name from the

possible chain conformations, which occupy a fuzzy tube-
shaped region of space. By superposing many confor-

mations of a network strand the tube progressively becomes

visible [45,46]. See Figs. 3 and 4. The tube is characterized

by single parameter dT denoting the tube diameter or

equivalently the Kuhn length of the tube axis (the so-called

‘primitive-path’ [47]). The tube diameter is a length scale

that depends not only on the instantaneous state of the

network, but also on the precursor melt state and the process

by which it was crosslinked. No formal derivation has so far

succeeded in deriving the tube model directly from first

principles, since the introduction of topological constraints

into statistical mechanical theories has proven to be very

complex, see e.g. [48–52]. Recently, it has become possible

to extract the tube diameter directly from simple topological

analysis of the primitive-path mesh-work of simulated

model polymer melts and networks [53]. While the tube

diameter with its strain dependence is a central quantity in in

tube theories, it is not directly experimentally observable. It

is regarded as a phenomenological parameter, either fitted or

inferred from other observables such as the plateau modulus

measured in rheological experiments [27,28,33,34] or the

structure factor obtained from scattering experiments

[54,55].

The confinement due to crosslinks and entanglements are

qualitatively different. An entanglement is free to slip along

the chain contours, while crosslinks are fixed chemical

bonds. Hence, it is not surprising that a qualitatively

different behavior is observed in the limits where only

crosslink or entanglement confinement exists. The phantom

model [56–59] captures the effects due to the network

connectivity. However, it completely neglects entangle-

ments. Constrained junction models [60–63] derive their

name from the attempt of introducing the effects of

entanglements by constraining the fluctuation of network

junctions.

Tube models stress the importance of constraining the

fluctuations of the entire network strand. Using replica

techniques [39] Deam and Edwards [22,64] showed that the

localization due to crosslinks can be represented as an

effective strain independent confinement potential. This

tube model is denoted model A in the following. Just as the

phantom model predicts isotropic and strain-independent

fluctuations of crosslinkers, model A predicts an isotropic

and strain-independent tube diameter dT;AðlaÞZdT;A. Here

la denotes the strain in the a’th Cartesian direction.

Gaylord and Douglas [43,44] modelled the combined

effect of connectivity and entanglement confinement. By

assuming an affine deformation of junction points, Cartesian

separability of the tube, and a constant volume of the

deforming tubes, their model predicted dTðlaÞZdT=
ffiffiffiffiffi
la

p
.

Heinrich and Straube [19] and later Rubinstein and

Panyukov [65] also modeled the effect of entanglement

confinement. They used an affinely transforming confining

potential, e.g. one where the strain dependence of the

confinement spring constant is lðlaÞZ lð1ÞlK2
a . Their tube

model is refered to as model B in the following, and it
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predicts an anisotropic strain-dependent tube diameter

dT;BðlaÞZ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ladT;B

p
.

A scaling argument relates the strain dependence of the

confinement springs to the tube diameters. For a random

walk, after n steps the displacement is d2wb2nwkBTn/k

where the step length is b, or equivalently k is the strength of

the connectivity springs. The energy increase due to the

confinement potential is wld2 per step. The average

displacement given by the total energy
ffiffiffiffi
kl

p
d2wKbT .

Since the right hand side and the connective springs are

strain independent, d2ðlaÞw1=
ffiffiffiffiffiffiffiffiffiffiffiffi
klðlaÞ

p
.

In general, a Cartesian component of the tube diameter

can be a function of the full strain tensor Lab, i.e. dT,a(Lab).

In the following, we will assume that different Cartesian

components a of vectorial network observables, such as the

tube diameter, are independent. This is tantamount to

assuming that the statistical distribution characterizing the

network state can be factorized into a product of each of the

three Cartesian directions. We denote the a’th component of

the strain dependent tube diameter dT(la), since the extra

Cartesian subscript for dT,a is superfluous. This fails when,

e.g. finite-extensibility effects are important [1] or if the

network has been crosslinked from an anisotropic melt state.

In order to simplify the notation, quantities stated without

explicit strain dependence are to be evaluated for the

unstrained network, e.g. dT,BhdT,B(laZ1).

The double tube model [37] derives its name from the

fact that it use two correlated and additive confining

potentials to represent the combined effects due to

crosslinks and entanglements. While the confining poten-

tials are assumed to be additive, the expressions for

microscopic deformations and stress–strain relations display

a complicated non-linear dependence on the relative

strength of the two confining potentials. The double tube

model gives an effective anisotropic and strain-dependent

tube diameter based on the two components by the addition

relation [37].

1

d4TðlaÞ
Z

1

d4T;A
C

1

l2ad
4
T;B

(1)

The purpose of a theory of rubber elasticity is to link the

microscopic conformational response to an imposed

macroscopic strain to the resulting macroscopic stress.

The microscopic strain response is modelled by the strain-

dependence of the confining potential, or equivalently the

strain-dependence of the tube diameter, as in Eq. (1). For a

Gaussian theory such as the double tube model the

microscopic conformations are completely characterized

by the mean-square distances

r2aðjiK jj; laÞZ h½ra;iðt; laÞKra;jðt; laÞ�
2i (2)

where i and j denotes beads on a network strand or in an

extended path through part of the network. The average is

not only over time but also over network strands or

realizations of paths through the network. ri,a(t;la) denotes
the a’th Cartesian component of the position of the i’th bead

at time t in a network under strain la. The unstrained mean-

square distances are abbreviated r2aðnÞ. In the following we

will also assume that the strand statistics of the unstrained

network and the precursor melt is the same and Gaussian,

i.e. that the unstrained mean-square distance is given by

r2aðnÞZb2n, where b is the statistical segment length of one

Cartesian component. The microscopic response to strain is

completely characterized by the dimensionless ratio

f Z
r2aðn; laÞKr2aðnÞ

l2ar
2
aðnÞKr2aðnÞ

(3)

At large length scales rubber is a solid, and hence it

deforms in an affine manner (i.e. fZ1). However, due to the

inextensible nature of chemical bonds affine deformation

can not persist down to monomeric length scales, where the

chains are in a liquid-like state. The extension of bonds

between monomers are unaffected by the deformation (fZ
0), however, their average orientation will be affected by the

strain. The length scale defining the crossover between these

two very different deformation regimes is the tube diameter.

On a scaling level, the degree of affinity f is expected to

be a universal function of the scaling parameter

yZr2aðnÞ=½2d
2
TðlaÞ�. The double tube model predicts

f ðyÞZ fAðyÞC
d4T;A

d4T;A Cl2ad
4
T;B

½fBðyÞK fAðyÞ� (4)

where fAðyÞZ1C ðexpðKyÞK1Þ=y and fBðyÞZ1C0:5 exp

ðKyÞC1:5ðexpð1KyÞK1Þ=y are two different scaling func-

tions describing confinement due to crosslinks and entan-

glements respectively.

The normal tension sTðlÞZssKst can be deduced by

regarding the network as being made up of ideal

independent Gaussian strand segments [66] of length n.

The density of segments is rs(n)Zr/n where r is the

monomeric density. Each segment is regarded as an entropic

spring with spring constant kBT =r
2
aðnÞ, where r2aðnÞ is the

mean-square distance for a precursor chain. The mean end-

to-end extension in parallel and perpendicular directions is

denoted by r2sðn; lsÞ and r2tðn; ltÞ. Hence, the Gaussian

segmental normal tension derived from the virial tensor can

be expressed using only mean-square distances as

sTðn; lÞZ kBTrsðnÞ
r2sðn; lsÞ

r2aðnÞ
K

r2tðn; ltÞ

r2aðnÞ

� �
(5)

Historically, there has been some debate on how to

choose the segment length scale n at which the ‘Gaussian’

normal tension should match the macroscopic normal

tension. A natural choice (made by all classical theories of

rubber elasticity [1,56–63]) is to set n equal to the average

strand length. Tube models calculate normal tensions from

the limit n toward 0. Combining Eqs. (3)–(5) and taking the

limit, the double tube model makes the following prediction

for the stress–strain relation
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sTðlÞZ ðl2s K1ÞgðlsÞK ðl2t K1ÞgðltÞ (6)

gðlaÞZ
rkBT

8

b2

d2TðlaÞ

d4T;A C2l2ad
4
T;B

d4T;A Cl2ad
4
T;B

(7)

The crosslink dominated limit is given by dT;A/dT;B,

i.e. where crosslinks cause the strongest confinement. In this

limit gfb2=d2T becomes strain independent, and the

classical stress–strain is sTðlÞfl2KlK1 regained. A

more complicated stress–strain behavior is observed in

general. Our prior simulation results show that the double

tube model can successfully describe the microscopic

deformations in the crossover from networks dominated

by entanglement to crosslink confinement [36]. Based on

fitting the microscopic deformations to estimate the

unstrained crosslinked and entanglement tubes, the double

tube model was furthermore seen to make accurate

predictions for the stress–strain relation when compared to

the simulation results.
3. Simulation methodology

The networks were simulated using the molecular

dynamics method which has been successfully applied to

study entanglement effects in polymer melts [67,68]. In this

model the polymers are represented as freely jointed bead-

spring chains. All monomeric units of mass m interact via a

purely repulsive Lennard–Jones potential

ULJðrÞ ¼
43 s

r

� �12
K s

r

� �6
þ

1

4

� �
for r!rc

0 for rRrc

8<
: (8)

where rcZ21/6s. This choice is similar to a hard-core

potential but allows simulation by standard molecular

dynamics methods. Monomer units connected along the

chain or through the crosslinking procedure are connected

by a finite extensible non-linear elastic (FENE) potential

UFENEðrÞZ
KR2

0k

2
ln 1K

r

R0

� �2� �
for r!R0

N for rRR0

8<
: (9)

The model parameters are the same as in Ref. [67]. The

temperature is TZ3/kB, and the basic unit of time tZs(m/

3)1/2. The simulations are carried out at a constant

monomeric density rZ0.85sK3. The equations of motion

were integrated using the velocity-Verlet algorithm where

all monomers are weakly coupled to a Langevin heat bath

with coupling GZ0.5tK1 [45,67]. We used a time step of

DtZ0.012t and all simulations were performed using the

LAMMPS code [69]. Most of the simulations were run on

36 processors of Sandia’s ICC Intel Xeon cluster. The

statistical segment length for one Cartesian component of

the equilibrated chains is bZ0.7528s [70]. One of the most

important features of this model is that the energy barrier for
the crossing of two chain segments is high enough

(z70kBT) such that crossing is virtually impossible.

We studied both randomly crosslinked and end-linked

networks. In all cases we started from equilibrated melts

M!N [70] specified in Table 1. Here M denotes the

number of chains, and N the chain length. For the

randomly crosslinked networks, a monomer is chosen at

random and all neighboring monomers within a reaction

radius rxZ1.3s are identified. A new bond is then

added between the randomly chosen monomer and one

of its neighbors chosen at random provided the two

monomers are either on different chains or at least a

chemical distance of three monomers apart if on the

same chain. To investigate the effects of self-loops and

dangling ends we ran some variations of the cross-

linking procedure to avoid these defects. To eliminate

self-loops networks (C1002) were also made in which

the minimum chemical distance along the same chain

was increased to 300. The procedure was then repeated

until the specified number of bonds was added. To

produce random networks without dangling ends

(C1003), all 2 M end monomers are first attached to a

neighboring monomer at random before the remaining

crosslinks are added. All the extra crosslinks for these

random networks are added instantaneously. For the

end-linked networks, one quarter of the chain ends are

chosen at random and attached to a fZ4-functional

crosslinker. When a free end comes within the reaction

radius rx of an unsaturated crosslinker, the free end is

connected to all the other ends which are already

attached to the crosslinker. The crosslinking procedure

was run until the defect free fraction of the network

exceeded 91%. For more details see Ref. [45].

The elastic modulus and non-linear stress versus strain

are easily measured experimentally for networks. Numeri-

cally the shear modulus is obtained from uniaxial, volume

conserving elongation of the sample described by a diagonal

strain tensor LZD(lx,ly,lz) with the stretching factor lxZl

in the parallel direction and the contraction factors lyZlzZ
lK1/2 in perpendicular directions.

The normal stress sT is then readily determined from

the microscopic virial tensor sTZsxxK ðsyyCszzÞ=2,

where x is the direction of elongation. Here the

deviatoric part of the virial tensor is defined as sabZ
VK1h

P
rij;aFij;bi where the sum is over unique pairs i

and j of interacting beads, rij the separation between

beads. Fij is force either due to the FENE springs or the

LJ excluded volume interactions. In the present

simulations we vary l from 4.0 (extension) to 0.6

(compression). Due to finite system size, we are limited

to relatively large strains lO1.2 or l!0.8. For smaller

strains, the stress is small and difficult to determine

accurately from the noise. After an initial step strain,

the strain decays very slowly. For the longest mean

strand length studied (NsZ100), runs typically of at



Table 1

Networks

Network Description

E100 2500!100 end-linked network

C1001 80!3500 melt with 1400 random cross links

C1002 80!3500 melt with 1400 random cross links, with no self-loops

C1003 80!3500 melt with 1400 random cross links, with no dangling ends

C100 Average of observables sampled using C1001, C1002, C1003
E20 5000!20 end-linked network

C20 80!3500 melt with 7000 random cross links
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least 105t (5!104t for NsZ20) were needed to reach

equilibrium.
4. Characterization of networks

After the crosslinking procedure is complete, we

characterize the network in terms of average strand length,

average croslink functionality and network defects. Uncross-

linked chains, dangling ends, and self-loops are defects,

which are identified by a burning algorithm that repeatedly

identifies and removes the defects until the defect free

network is identified. Network defects can still be elastically

active, because they relax slowly compared to the duration

of a simulation. Due to this we have not attempted to correct

the sampled stresses to take account of the defect free

fraction of the network.

Characterizations of all the networks studied are

presented in Table 2. For all the networks, the fraction of

beads in the defect free fraction is above 90%. The fraction

of strands in the defect free fraction is above 85%, i.e. these

are strands where both ends are connected. For the randomly

crosslinked networks roughly 10% of all the strands form

closed self-loops, except for C1002 where the crosslinking

procedure was modified to inhibit the formation of self-

loops. Dangling ends constitute less than 6% of all the

strands. The crosslinking procedure for C1003 prevented

dangling ends. The defect free part of the network has a

approximately 10% larger strand length, and a somewhat

smaller average functionality. This is due to the removal of

the predominantly short self-loops. The gel fraction is larger

than 99.6% for all the networks.

The strand length distribution is shown in Fig. 1. End-
Table 2

Network characterizations

d.f. beads d.f. strands Self-loops hn

E100 0.92 0.92 0.02 1

C1001 0.91 0.85 0.09 1

C1002 0.94 0.94 0.00 1

C1003 0.97 0.90 0.10 1

E20 0.94 0.94 0.04

C20 0.95 0.90 0.09

Defect free fraction of network beads, defect free fraction of network strands, self-

average crosslink functionality with and without defects.
linked networks are monodisperse by construction. For

randomly crosslinked networks we observe as expected an

exponential P(n)ZhniK1 exp(Kn/hni) [71]. For this distri-

bution 63% of the strands will have less than the average

length, but they only contain 26% of the beads. 6% of the

strands will be longer than 3hni, and they contain 20% of all

beads.

Note, that it is important to distinguish between effects

due to network defects and connective disorder. Since we

can identify the defect parts of the network structure, we can

discard these, and focus on observing the effects that are

caused by disorder.
5. Analysis

We are interested in how network heterogeneities due to

connective disorder affect network observables. Of particu-

lar interest for rubber elasticity theory is confinement which

gives rise to localization, the network strain response which

gives rise to microscopic deformations, and the macroscopic

stress–strain relation. It is the goal of any theory of rubber

elasticity to predict the macroscopic stress from the

microscopic deformations response to an imposed strain.
5.1. Visualization

Fig. 2 shows the localization of three segments. The same

three chain segments are shown for both the strongly (C20)

and weakly (C1003) crosslinked networks. Because both the

strongly and weakly networks have been crosslinked from

the same precursor melt state, the three segments appears

very similar. To visualise how the strands are connected to
i w.d. hni wo.d. hfi w.d. hfi wo. d.

00.0 100.0 3.9 3.7

00.9 108.6 4.1 3.6

00.4 100.8 4.1 4.0

06.1 115.4 4.0 3.6

20.0 20.0 4.0 3.8

23.2 24.3 4.4 4.0

loop fraction of strands, average strand length with and without defects, and



Fig. 1. Strand length distribution of the defect free part of the network (a) E20 (thin dashed) C20 (solid) (b) E100 (thin dashed), C1001, C1002, C1003 (solid

lines with increasing thickness). The thick dashed line is P(n) with hniZ20 and 100, respectively.
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the rest of the network, the beads on the pendant chains have

been shown up to a chemical distance of 20 beads away

from the three segments. The segment length is 500 beads,

corresponding to either an average of 25 or five crosslinks

along the segment, which explains the ‘hairy’ appearance of

the strongly crosslinked network. Due to the exponential

strand length distribution crosslinks are very unevenly

distributed along the segments, which is especially clear

from the weakly crosslinked network.

Figs. 3 and 4 show the tube localization of three segments

shown in Fig. 2. The cloud of points consists of the

superposition of all bead positions in the sampled trajectory

[45], and show the range of excursions available for thermal

fluctuations subject to cross-link and entanglement con-

straints. A single strand configuration is also shown. The

length of the simulation trajectories is 120kt and 58kt, for
Fig. 2. Visualization of three segments (thick blue/green) and their pendant chain
the weakly and strongly randomly crosslinked networks,

respectively, which is much larger than the entanglement

time tew1100t that was estimated by Pütz et al. [72].

When networks are strained, the microscopic confor-

mations respond by being deformed. While it is difficult to

compare the large scale structural change between the

strained and unstrained conformations, the local structure

appear to be very similar as expected. To visualise the large

scale strain dependence of the microscopic deformations,

we transform the strained segment conformations back into

the unstrained box, where they are compared directly to the

unstrained state. The back transform is made by an inverse

affined scaling transformation ri;aðlaÞ/ri;aðlaÞ=la which

leaves an affinely deforming bead ri;aðlaÞZlari;a invariant.

A sub-affine or strain-independent deformation response

will appear as compressed along the x direction and
s (thin red) for C20 (left) and C1003 (right) for lZ1 (see text for details).



Fig. 3. Visualization of tube localization for C20 for lZ1 (top left), lZ2 affinely back transformed into the unstrained box (top right), and lZ2 (bottom) (for

details see the text).

Fig. 4. Visualization of tube localization for C1003, for lZ1 (top left), lZ2 affinely back-transformed into the unstrained box (top right), and lZ2 (bottom).

C. Svaneborg et al. / Polymer 46 (2005) 4283–4295 4289



Table 3

Number of paths in the Pm ensembles for the randomly crosslinked

networks

C1001 C1002 C1003 C20

P0 957 898 1024 31

P1 704 840 749 96

P2 312 447 282 197

P3 102 138 88 240

P4 24 40 25 210

P5 232

P6 179

P7 121

P8 74

P9 41
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stretched in the yz plane (shown as the thickness of the

frame of the box). Comparing the unstrained and back

transformed strained conformations shows that the large

scale structure remains invariant, i.e. the position of the tube

deforms affinely. At short length scales, however, the

segments appears to be affected by the back-transform

indicating sub-affine strain dependence.

The tube diameters are given by the width of the cloud

parallel and perpendicular to the strain direction. Compar-

ing the strongly crosslinked (Fig. 3) and weakly crosslinked

(4) networks shows that increasing the number of crosslinks

leads to stronger localization, and hence a decrease of the

tube diameter, a similar behavior is observed for the strained

networks. It is difficult to discern any strain dependence of

the tube diameter for the strongly crosslinked networks,

however, the tube diameter for the weakly crosslinked

network shows sub-affine strain dependence.

Entanglements only localize transverse fluctuations with

respect to the local tube axis, while crosslinks localize both

longitudinal and transverse fluctuations. To visualize the

effects of longitudinal fluctuations, the segments were

divided into blocks of 10 beads each, which are shown

with an alternating blue and green color. For the weakly

crosslinked network (Fig. 4) the cloud appears to be an

uniform mixture of the two colors, indicating that

longitudinal fluctuations smears the colors along the tube

contour. For the strongly crosslinked networks (Fig. 3) the

cloud can at places be observed to be alternating between

the blue and green. This shows that increasing the number of

crosslinks atleast partially freeze the longitudinal fluctu-

ations. Note that seven blocks corresponds to one entangle-

ment length Ne, which appears roughly to match the step

length of the tube.

5.2. Path ensembles

In order to quantitatively probe effects of network

heterogeneities, we need to sample observables not only

averaged over the entire network, but also for suitably

chosen sub-components. For this purpose, we have

generated a set of path ensembles. The strand length of

the precursor chains for the randomly crosslinked networks

is 3500 beads. On each precursor chain, we identified 30

segments of length 100. When the precursor melt is

crosslinked, these segments becomes extended paths that

traverse through part of the network structure. Paths

containing network defects were removed. Furthermore,

only the middle part of each precursor chain was used to

avoid effects due to the dangling ends. The paths were

sorted into bins depending on the number of crosslinks that

then traversed. The ensemble of paths traversing m

crosslinks will be denoted Pm. The number of paths in

each Pm is shown in Table 3. Besides taking averages over

all beads in a path, it is interesting to take averages restricted

to the crosslinks in each path ensemble. This ensemble of

crosslinker beads is denoted Xm.
5.3. Localization

In order to characterize localization, we sample the

mean-square displacements defined as

g1;aðtÞZ h½ri;aðtÞKri;að0Þ�
2i (10)

The average is taken not only over time but also an

ensemble of beads, for instance all crosslinks, all beads, or

one of the path ensembles. At short time scales the mean-

square displacement shows a diffusive behavior, while at

large time scales the mean-square displacement reaches a

plateau that characterises the spatial localization. We define

the fluctuation radius as u2aZg1;aðt/NÞ=2. The extrapol-

ation is done by performing a least-squares fit of gðu2zÞ ¼

2u2½1KexpðK
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t=½u4z�

p
Þ� to the sampled g1,a(t), where z

denotes a strain-dependent friction parameter.

The fluctuation radii sampled for a number of different

ensembles are shown in Fig. 5. The same qualitative

behavior is observed with regard to strain-dependence for

strongly and weakly crosslinked networks, however,

stronger localization is observed for the stronger crosslinked

network.

Fig. 5(a) and (b) shows the fluctuation radii averaged

over paths in the Pm ensembles. Paths in the P0 ensemble do

not traverse crosslinks, as a result they only experience the

constraints due to entanglements with neighboring chains.

Segments on such a path have full freedom to perform

curvilinear, longitudinal fluctuations along the tube in which

they are confined. We observe u2aðlaÞwla a strain response,

corresponding to the expectation of the strain-dependence

of the entanglement tube [19,65].

The longitudinal fluctuations gradually become sup-

pressed for path ensembles traversing more crosslinks. This

is observed to cause a gradual decrease of the fluctuation

radii, and a much weaker strain response. This is expected

from the Warner–Edwards tube model [64] which accounts

only for the confinement due to crosslinks. The model

predicts strain independent fluctuations. Fig. 5(c) and (d)

shows the fluctuation radii sampled for the Xm crosslink

ensembles. Compared to the Pm ensembles, the restriction to

only averaging over crosslinks is observed to cause the



Fig. 5. Strain-dependent localization averaged over different ensembles. Networks with average strand length 100 (top row) and 20 (bottom row). Localization

averaged over Pm paths (left column), Xm crosslinks (center column), and for all beads or crosslinks (right column). Symbols are as follows: (a) C100 sampled

using P0 (B), P1 (x), P2 (,), P3 (>) (b) C20 sampled using P0 (B), P2 (,), P4 (>), P8 (C) (c) C100 sampled using X1 (x), X2 (,), X3 (>) (d) C20 sampled

using X2 (,), X4 (>), X8 (C) (e) E100 sampled using all beads (B), C100 sampled using all beads (>), E100 sampled using all crosslinks (,), C100

sampled using all crosslinks (6) (f) E20 sampled using all beads (B), C20 sampled using all beads (>), E20 sampled using all crosslinks (,), C20 sampled

using all crosslinks (6).
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fluctuation radii to display a very weak dependence on the

number of crosslinks traversed as well as a rather weak

strain dependence.

A clear difference is observed when comparing the

fluctuation radii for all beads in the end-linked and

randomly crosslinked networks, shown in Fig. 5(e) and

(f). The reason is the network heterogeneity, where the

longitudinal fluctuations of segments on long strands make a

large contribution to the fluctuation radii for the randomly

crosslinked networks compared to end-linked networks. The

fluctuation radii averaged over all crosslinks, however, are

not affected.
5.4. Microscopic deformations

Fig. 6 shows the microscopic deformations obtained by

averaging mean-square distances r2aðla; nÞ over the ensem-

bles used in Fig. 5(a). The microscopic deformations follow

the behavior expected from the theory, i.e. they show a

crossover from a strain-independent behavior at short

distances to affine (i.e. r2aðla; nÞ=r
2
aðnÞ ¼ l2a) behavior at

large distances. For path ensembles with an increasing

number of crosslinks, the location of the crossover shifts

slightly, indicating a change of the tube diameter.

To obtain the tube diameters, the double tube model was

fit to the microscopic deformations analyzing all the

sampled strains as well as the parallel and perpendicular

components simultaneously. Logarithmically distributed

data points were used to reduce the large number of

correlated data points at large n. At large distances the
deformation is affine, and the microscopic deformations

does not contain any information about the tube diameter.

The two unstrained tube diameters, dT,A and dT,B, were fit

simultaneously, the effective strain dependent tube diameter

dT is then given by Eq. (1) and the prediction for the

microscopic deformations by Eqs. (3) and (4). The statistical

error was estimated by a block analysis over 10 subsets of

paths.

The resulting tube diameters for the P0, P2, and P4
ensembles are shown in the insert of Fig. 6. Compared to the

fluctuation radii shown in Fig. 5(a), the corresponding tube

diameters are observed to be only weakly affected by which

path ensemble is used, in particular the strain-dependence is

not affected.

To characterize the deformation response averaged over

the entire network, we have sampled mean-square distances

along paths of length 500 through the networks. For

randomly crosslinked networks, we used all the defect

free paths that were generated for studying network

heterogeneities. We generated random non-reversible

paths through the defect free part of the end-linked

networks, to have a comparable path ensemble. In all

cases, the path length was five times the average strand

length of the networks.

The same behavior of the microscopic deformations

averaged over the entire network is observed for the end-

linked and randomly crosslinked networks shown in Fig.

7(a) and (b). The slight horizontal shift indicates a slight

increase of the tube diameter for the randomly crosslinked

networks. The three different variations of the random



Fig. 6. Parallel component of microscopic deformations sampled for P0 (B), P2 (C), P4 (,), for lZ0.6, 0.8, 1.5, 2, 3, 4 for C100. Lines are fit of the double

tube model to P0 (dashed) and P4 (solid). The insert shows the strain dependence of the fitted tube diameter for P0 (dashed), P2 (dotted), and P4 (solid).
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crosslinking (Fig. 7(c)) are observed not to have any

discernible effect.

The double tube model is seen to provide an accurate

description of the microscopic deformations, not only for

the ideal end-linked networks, but also for the randomly

crosslinked networks. The results for the fits are summar-

ized in Table 4. The strongly and weakly randomly

crosslinked networks are observed to have a 14% and 7%

larger tube diameter, respectively, compared to the end-

linked networks. A deviation between the theory and
Fig. 7. Parallel and perpendicular microscopic deformations (a) E20 (B) and C20

C1001 (6), C1002 (C), C1003 (x) for lZ1.5, 2, 3, 4 (d) E100 (B) for lZ1.5, 2, 4

(dotted), pure entanglement confinement (hashed).
sampled microscopic deformations is observed for the

weakly crosslinked systems at large strains and small n in

the perpendicular direction. This deviation causes a

systematic error of the fit parameters. We fitted the data

restricted to y2[0.1:1] and y2[1:10] separately, to estimate

the error of our fit parameters due to this effect. We observe

that the systematic error is about a factor of two larger than

the statistical error.

The entanglement tube diameter dT,B is systematically

smaller than the crosslink tube diameter dT,A for all the
(,) for lZ1.25, 1.5, 2 (b) E100 (B) and C1001 (,) for lZ1.5, 2, 3, 4 (c)

. Lines are fits of the double tube model (solid), pure crosslink confinement



Table 4

Fit results

System Data points dT/b dT,a/b dT,b/b cred
2

E100 342 2.57 [2.47,2.70] 4.54 [4.05,5.13] 2.63 [2.46,2.73] 32.56

C1001 216 2.77 [2.56,3.12] 5.10 [4.07,7.12] 2.84 [2.59,3.07] 5.89

C1002 216 2.74 [2.51,3.12] 4.85 [4.09,5.84] 2.82 [2.55,3.32] 5.04

C1003 216 2.80 [2.56,3.17] 4.83 [4.00,6.45] 2.88 [2.59,3.39] 4.14

C100 2.77 [2.53,3.03] 5.01 [4.05,6.14] 2.76 [2.55,3.13]

E20 120 1.94 [1.80,2.14] 2.67 [2.31,3.09] 2.11 [1.87,2.75] 3.28

C20 180 2.21 [1.96,2.53] 3.05 [2.61,3.95] 2.39 [2.01,3.68] 1.69

Values in brackets denotes the systematic error.
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networks. This indicates that both networks are in a regime

where entanglement confinement is the strongest localiz-

ation effect. It is surprising that the strongly crosslinked

system with average strand length 20 is still dominated by

entanglements when the entanglement length is NeZ70.

The limit of weak crosslinking/long strands obviously

corresponds to a melt, however, our results suggest a

complex interplay of connectivity and topology is present in

the limit of strong crosslinking, which behaves very

differently than expected from the phantom model limit dT;A
/dT;B of the double tube model.

The double tube model consists of two components

representing crosslink and entanglement confinement

potentials, respectively. It is natural to ask if both

components are really required to represent the simulation

data. By fixing either dT,B or dT,A at a large value, the double

tube model reduces to the Warner–Edwards tube model

(model A) or the Heinrich–Straube/Rubinstein–Panyukov

entanglement tube model (model B) respectively. Fig. 7(d)

shows the fits to these two limiting cases for the E100

network. Clearly, neither of the two components are able to

provide an accurate description of the microscopic defor-

mations at strains larger than lw2, whereas the double tube

model is very good agreement with the data for all strains.

This shows that while entanglements are the strongest

source of localization compared to crosslinks, neither

confinement effect can alone provide a good description

of the microscopic deformations. Similar results has been

found for other networks studied.
5.5. Macroscopic stresses

The question is at which segment size is the normal

tensions expected to match the macroscopic normal

tensions. Since both the sampled microscopic deformations

and the theoretical predicted deformations are available for

our simulated networks on all length scales, this question

can be addressed directly.

The sampled values for the length scale dependent normal

tensions Eq. (5) are plotted in Fig. 8. A natural choicemade by

all classical theories of rubber elasticity [1,56–63] is to set n

equal to the average strand length, which is shown to

systematically underestimate themacroscopic normal tension.

Fig. 8 indicates that relevant deformations occur down to
scales on the order of the tube diameter, below which sT(n,l)

becomes independent of n. Thus the limit n toward 0, inwhich

the normal tensions are calculated in the tube model, is not

critical in the present case.However, thiswould not be the case

for a network made of semi-flexible chains.

Fig. 9 shows the stress–strain relations obtained directly

by sampling the microscopic virial tensor, the ‘Gaussian’

normal tensions, and the prediction based the double tube

model fits to the microscopic deformations. The stress–

strain relation for the end-linked and randomly crosslinked

networks are observed to be very similar, except for a

decrease in the shear modulus for the randomly crosslinked

networks. This is directly related to the corresponding

increase of the tube diameter for this networks. Good

agreement is also observed between the simulation results

(10% error bar) and the stress–strain relation predicted by

the double tube model (estimated to have a 30% error bar).

The ‘Gaussian’ normal tensions evaluated at the average

strand length is about a factor of two off compared to the

normal tensions obtained by sampling the microscopic virial

tensor. However, the ‘Gaussian’ normal tensions extrapo-

lated to n toward 0 is observed to be in perfect agreement

with the predicted stress–strain relation, and in good

agreement with the virial normal tensions. We have

previously observed that the ‘Gaussian’ normal tensions

constitute approximately 90% of the normal tension

obtained using the microscopic virial tensor [36].

Clearly, estimating the macroscopic stresses from a

mesoscopic model representing the network as ideal

Gaussian chain segments is a subtle point, as it has been

discussed by Gao and Weiner [73]. Furthermore, when the

crosslinking process is not instantaneous the statistics of the

unstrained network can differ from that of the precursor

melt. If the crosslinking process causes network strands to

be stretched relative to the precursor melt, then the normal

tensions will be underestimated. It is worth noting that better

agreement would be observed if we had fit the theoretical

stress–strain relation directly to the sampled stresses,

however, the goal of a theory for rubber elasticity is to

relate microscopic deformations and macroscopic stresses,

and predicting the macroscopic stresses based on the

sampled microscopic deformations provides a much more

stringent test of the microscopic assumptions on which

theories are based.



Fig. 8. Length scale dependent normal tensions Eq. (5) expressed using sampled mean-square distances (symbols) and the double tube model Eqs. (3) and (4)

(solid and dashed line) (a) E20 (B) and C20 (,) for lZ1.25, 1.5, 2 (b) E100 (B) and C100 (,) for lZ2, 3, 4. The average strand length is illustrated by a

dotted line.
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6. Conclusions

We have end-linked and randomly crosslinked equili-

brated polymer melts to produce two comparable sets of

model networks characterized by the same average strand

length but very different strand length distributions. This

connective disorder causes randomly crosslinked networks

to be more heterogeneous compared to end-linked networks.

We have investigated the effects of network heterogeneities

on the observables relevant for rubber elasticity theories, i.e.
Fig. 9. Mooney–Rivlin plot of stress–strain relations (a) E20 (b) C20 (c) E100 and

tensor (B), extrapolated ‘Gaussian’ normal tension (C), ‘Gaussian’ normal tensio

theory prediction.
localization, microscopic deformation response to macro-

scopic strain, and the macroscopic stress–strain relation.

For all observables, the averages over the entire network

show negligible differences between randomly crosslinked

and end-linked networks. One exception is the fluctuation

radii averaged over all beads, which is directly related to the

large contribution from the longitudinal fluctuations of

segments on long strands in the randomly crosslinked

networks. Nonetheless, more detailed analysis show effects

due to heterogeneity in the networks. These effects are much
(d) C100. Symbols are as follows: normal tension from microscopic virial

n evaluated at the average strand length (x). The solid line is the double tube
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more pronounced for the localization compared to the

microscopic deformations of the networks, which are only

weakly affected by disorder and longitudinal fluctuations.

Our results show that the double tube model can describe

the microscopic deformations not only for the case for the

highly idealized end-linked networks, but that it is also

applicable to more realistic randomly crosslinked networks.

The double tube model, furthermore, provide predictions for

the macroscopic stresses, which are in good agreement with

the sampled stress–strain relation. We observe that both the

tube diameter and the stress–strain relation are rather

insensitive to the network heterogeneities.

In future work, we will investigate how the scattering

functions are affected by network heterogeneities, and using

the procedure presented in Ref. [53] we can characterize not

only the connected state of the network, but also directly

investigate the primitive path meshwork and its strain

dependence, which should provide an explanation of why

the randomly crosslinked networks are observed to have a

larger tube diameter, and why the entanglement confine-

ment still dominate for the strongly crosslinked system. We

will also compare how swelling affects the network

heterogeneities for random and end-linked networks.
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